Kamis, 12 Februari 2015

rohani islam sma 19 garut



makalah kimia radioaktif



KATA PENGANTAR


Puji syukur kehadirat tuhan yang Maha Esa, atas segala limpahan karunia dan rahmat serta inayahnya, kami sebagai penyusun dapat menyelesaikan makalah dengan tepat waktu.

Semoga dengan makalah ini, pembaca dapat menambah pengetahuan dan mengetahui tentang apa itu Zat Radio Aktif. Dalam makalah ini, kami akui masih banyak kekurangan, maka dari itu kami harapkan pembaca dapat memberikan masukan yang bersifat membangun untuk kesempurnaan makalah ini.




11 NOPEMBER 2014,


PENYUSUN



DAFTAR ISI

BAB I

PENDAHULUAN



A.    Latar Belakang Masalah

Seiring perkembangan teknologi masa kini dengan adanya radioaktif membawa perkembangan di dalam berbagai aspek kehidupan. Perlu kita ketahui bawasannya dengan berkembangnya teknologi membawa perubahan yang sangat signifikan akan tetapi semua itu selain  memberikan pengaruh yang positif juga menimbulkan efek negative pula. Di dalam makalah ini membahas tentang apa itu radioaktif, pengolahan limbah, dampak-dampak yang ditimbulkan dan manfaat radioaktif.

B.     Rumusan Masalah

1.      Apa Itu Radioaktif ?
2.      Sejarah Radioaktif
3.      Sifat Radioaktif
4.      Manfaat Radioaktif
5.      Apakah Dampak Dari Radioaktif ?
6.      Bagaimana Pengolahan Kembali Limbah Radioaktif ?

C.     Tujuan Masalah

1.      Mengerti Radioaktif
2.      Mengetahui Bagaimana Sejarah Radioaktif
3.      Mengetahui Tentang Sifat-Sifat Radioaktif
4.      Mengetahui Manfaat Radioaktif Bagi Kehidupan
5.      Sebagai Antisipasi Dampak Dari Teknologi Radioaktif
6.      Mengetahui Cara Pengolahan Limbah Radioaktif

BAB II

PEMBAHASAN

 

A.    Pengertian Radioaktif

Radioaktifitas adalah sifat suatu unsur yang dapat memancarkan radiasi (pancaran sinar) secara spontan. Tergolong ke dalam zat radioaktif, unsur tersebut biasanya bersifat labil, berarti tergolong zat radioaktif adalah isotopnya, karena untuk mencapai kestabilan salah satunya harus melakukan peluruhan. Peluruhan zat radioaktif untuk menghasilkan unsur yang lebih stabil sambil memancarkan partikel seperti, partikel alpha α (sama dengan inti 4He), partikel beta (β), dan partikel gamma (γ).
Pengertian atau arti definisi pencemaran radioaktif adalah suatu pencemaran lingkungan yang disebabkan oleh debu radioaktif akibat terjadinya ledakan reaktor-reaktor atom serta bom atom. Yang paling berbahaya dari pencemaran radioaktif seperti nuklir adalah radiasi sinar alpha, beta dan gamma yang sangat membahayakan makhluk hidup di sekitarnya. Selain itu partikel-partikel neutron yang dihasilkan juga berbahaya. Zat radioaktif pencemar lingkungan yang biasa ditemukan adalah 90SR merupakan karsinogen tulang dan 131J.

B. Sejarah Sinar Radioaktif

Pada tahun 1899, Ernest Rutherford (penemu teori atom Rutherford) melakukan studi tentang sinar radioaktif. Dia menempatkan radium di bagian bawah kotak timah kecil. Sinar yang dihasilkan dikenakan pada medan magnet yang sangat kuat. Rutherford menemukan bahwa sinar dipisahkan menjadi tiga bagian yang berbeda seperti yang ditunjukkan pada gambar di bawah ini.
Untuk memudahkan, Rutherford menamai tiga jenis radiasi tersebut dengan alfa (α), beta (β) dan gamma (γ). Sinar alfa dibelokkan ke arah yang berlawanan dengan sinar beta. Gambar di atas menunjukkan bahwa sinar alfa bermuatan positif (dibelokkan ke arah medan magnet negatif), sinar beta bermuatan negatif (dibelokkan ke arah medan magnet positif), sedangkan sinar gamma tidak bermuatan (tidak dibelokkan). Penelitian lebih lanjut telah menunjukkan bahwa sinar alfa merupakan inti helium, sinar beta adalah elektron dan sinar gamma adalah radiasi elektromagnetik yang frekuensinya lebih tinggi dari sinar-X.

C. Sifat-sifat Sinar Radioaktif

Sinar radioaktif dibagi menjadi tiga, yaitu alfa, beta, dan gamma. Ketiganya memiliki sifat yang berbeda. Inilah perbedaan sifat sinar alfa, beta, dan gamma:

C.1 Sifat sinar alfa

·         Dibelokkan oleh medan listrik dan magnet. Pembelokan kurang tajam jika dibandingkan dengan partikel beta, karena partikel alfa mempunyai massa lebih besar.
·         Mempengaruhi plat fotografi, dan menyebabkan fluoresensi pada bahan fluorescent.
·         Mengionisasi gas yang dilalui.
·         Massa partikel alpha adalah 6,643 x 10-27 kg atau kira-kira empat kali massa proton. Muatan partikel alfa adalah +3,2 x 10-19 C (dua kali muatan proton).
·         Sebuah partikel alpha terdiri dari dua proton dan dua neutron.
·         Kecepatan sebuah partikel adalah 107m/s.
·         Daya tembus yang sangat kecil.
·         Memiliki energi kinetik yang besar.
·         Menghancurkan sel-sel hidup dan menyebabkan kerusakan biologis.
·         Mereka bisa tersebar saat melewati mika tipis atau emas foil.

C.2 Sifat sinar beta

·         Dibelokkan oleh medan listrik dan magnetik. Defleksi besar karena partikel beta lebih ringan daripada a-partikel.
·         Mempengaruhi pelat fotografi.
·         Mengionisasi gas yang mereka lalui.
·         Massa partikel beta adalah 9,1 x 10-31 kg dan muatannya adalah +1,6x10-19 C.
·         Kecepatannya adalah 108 m/s.
·         Daya tembus partikel beta adalah lebih dari partikel alfa.
·         Menyebabkan fluoresensi bahan fluorescent.
·         Menghasilkan sinar-X ketika dihentikan oleh logam yang mempunyai nomor atom dan titik leleh tinggi seperti tungsten.
·         Menyebabkan kerusakan radiasi yang lebih besar karena dapat dengan mudah melewati kulit tubuh.

C.3 Sifat sinar gamma

·         Tidak dibelokkan oleh medan listrik dan magnetik.
·         Mempengaruhi pelat fotografi.
·         Kekuatan ionisasi sangat rendah dibandingkan dengan partikel alfa maupun beta.
·         Sinar gamma adalah gelombang elektromagnetik seperti sinar-X dan sinar tampak. Panjang gelombang sinar gamma lebih pendek dari sinar-X.
·         Kecepatan sinar gamma sama dengan kecepatan cahaya.
·         Daya tembus tinggi.
·         Menyebabkan fluoresensi pada bahan fluorescent.
·         Terdifraksi oleh kristal.
·         Meskipun sinar-X dan sinar gamma memiliki sifat yang mirip, asal keduanya berbeda. Sinar-X berasal dari awan elektron di luar inti, dimana sinar gamma berasal dari inti.
·         Dapat dengan mudah melewati tubuh manusia dan menyebabkan kerusakan biologis yang besar.

D. STRUKTUR ZAT RADIOAKTIF

D.1 Struktur Inti

Inti atom tersusun dari partikel-partikel yang disebut nukleon. Suatu inti atom yang diketahui jumlah proton dan neutronnya disebut nuklida.
Description: http://nofrikakimiapasca.files.wordpress.com/2011/05/rumus-11.jpg?w=202&h=167
 Macam-macam nuklida:
a. Isotop: nuklida yang mempunyai jumlah proton sama  tetapi jumlah neutron berbeda.
Contoh:
Description: http://nofrikakimiapasca.files.wordpress.com/2011/05/isotop.jpg?w=300&h=34
b. Isobar: nuklida yang mempunyai jumlah proton dan neutron sama tetapi jumlah proton berbeda.
Contoh:
Description: http://nofrikakimiapasca.files.wordpress.com/2011/05/isobar1.jpg?w=257&h=36
c. Isoton: nuklida yang mempunyai jumlah neutron sama.
Contoh:
Description: http://nofrikakimiapasca.files.wordpress.com/2011/05/isoton.jpg?w=300&h=52

 D.2 Pita Kestabilan

Unsur-unsur dengan nomor atom rendah dan sedang kebanyakan mempunyai nuklida stabil maupun tidak stabil (radioaktif). Contoh pada atom hidrogen, inti atom protium dan deuterium adalah stabil sedangkan inti atom tritium tidak stabil. Waktu paruh tritium sangat pendek sehingga tidak ditemukan di alam. Pada unsur-unsur dengan nomor atom tinggi tidak ditemukan inti atom yang stabil. Jadi faktor yang memengaruhi kestabilan inti atom adalah angka banding dengan proton.
Inti-inti yang tidak stabil cenderung untuk menyesuaikan perbandingan neutron terhadap proton agar sama dengan perbandingan pada pita kestabilan. Bagi nuklida dengan Z = 20, perbandingan neutron terhadap proton (n/p) sekitar 1,0 sampai 1,1. Jika Z bertambah maka perbandingan neutron terhadap proton bertambah hingga sekitar 1,5.
Inti atom yang tidak stabil akan mengalami peluruhan menjadi inti yang lebih stabil dengan cara:Description: http://nofrikakimiapasca.files.wordpress.com/2011/05/stabil.jpg?w=551&h=440

D.3 Reaksi pada Inti

Reaksi yang terjadi di inti atom dinamakan reaksi nuklir. Jadi Reaksi nuklir melibatkan perubahan yang tidak terjadi di kulit elektron terluar tetapi terjadi di inti atom. Reaksi nuklir memiliki persamaan dan perbedaan dengan reaksi kimia biasa. Persamaan reaksi nuklir dengan reaksi kimia biasa, antara lain seperti berikut.
a. Ada kekekalan muatan dan kekekalan massa energi.
b. Mempunyai energi pengaktifan.
c. Dapat menyerap energi (endoenergik) atau melepaskan energi (eksoenergik).
Perbedaan antara reaksi nuklir dan reaksi kimia biasa, antara lain seperti berikut.
a. Nomor atom berubah.
b. Pada reaksi endoenergik, jumlah materi hasil reaksi lebih besar dari pereaksi, sedangkan dalam reaksi eksoenergik terjadi sebaliknya.
c. Jumlah materi dinyatakan per partikel bukan per mol.
d. Reaksi-reaksi menyangkut nuklida tertentu bukan campuran isotop.
Reaksi nuklir dapat ditulis seperti contoh di atas atau dapat dinyatakan seperti berikut. Pada awal dituliskan nuklida sasaran, kemudian di dalam tanda kurung dituliskan proyektil dan partikel yang dipancarkan dipisahkan oleh tanda koma dan diakhir perumusan dituliskan nuklida hasil reaksi.
Contoh
Description: http://nofrikakimiapasca.files.wordpress.com/2011/05/9.jpg?w=167&h=78
Ada dua macam partikel proyektil yaitu:
a. Partikel bermuatan seperti ,   atau atom yang lebih berat seperti
b. Sinar gamma dan partikel tidak bermuatan seperti neutron


.
Contoh
  1. Penembakan dengan partikel alfa
Description: http://nofrikakimiapasca.files.wordpress.com/2011/05/8.jpg?w=252&h=35
2.  Penembakan dengan proton
Description: http://nofrikakimiapasca.files.wordpress.com/2011/05/7.jpg?w=243&h=30
3. Penembakan dengan neutron
Description: http://nofrikakimiapasca.files.wordpress.com/2011/05/6.jpg?w=230&h=36

D.4 Reaksi Pembelahan Inti

Sesaat sebelum perang dunia kedua beberapa kelompok ilmuwan mempelajari hasil reaksi yang diperoleh jika uranium ditembak dengan neutron. Otto Hahn dan F. Strassman, berhasil mengisolasi suatu senyawa unsur golongan II A, yang diperoleh dari penembakan uranium dengan neutron. Mereka menemukan bahwa jika uranium ditembak dengan neutron akan menghasilkan beberapa unsur menengah yang bersifat radioaktif. Reaksi ini disebut reaksi pembelahan inti atau reaksi fisi.
Contoh reaksi fisi.
Description: http://nofrikakimiapasca.files.wordpress.com/2011/05/eeeeeeee.jpg?w=300&h=74
Dari reaksi fisi telah ditemukan lebih dari 200 isotop dari 35 cara sebagai hasil pembelahan uranium-235. Ditinjau dari sudut kestabilan inti, hasil pembelahan mengandung banyak proton. Dari reaksi pembelahan inti dapat dilihat bahwa setiap pembelahan inti oleh satu neutron menghasilkan dua sampai empat neutron. Setelah satu atom uranium-235 mengalami pembelahan, neutron hasil pembelahan dapat digunakan untuk pembelahan atom uranium-235 yang lain dan seterusnya sehingga dapat menghasilkan reaksi rantai. Bahan pembelahan ini harus cukup besar sehingga neutron yang dihasilkan dapat tertahan dalam cuplikan itu. Jika cuplikan terlampau kecil, neutron akan keluar sehingga tidak terjadi reaksi rantai.

D.4 Reaksi Fusi

Pada reaksi fusi, terjadi proses penggabungan dua atau beberapa inti ringan menjadi inti yang lebih berat. Energi yang dihasilkan dari reaksi fusi lebih besar daripada energy yang dihasikan reaksi fisi dari unsur berat dengan massa yang sama. Perhatikan reaksi fusi dengan bahan dasar antara deuterium dan litium berikut.
Description: http://nofrikakimiapasca.files.wordpress.com/2011/05/11.jpg?w=224&h=104
Reaksi-reaksi fusi biasanya terjadi pada suhu sekitar 100 juta derajat celsius. Pada suhu ini terdapat plasma dari inti dan elektron. Reaksi fusi yang terjadi pada suhu tinggi ini disebut reaksi termonuklir. Energi yang dihasikan pada reaksi fusi
D.5 Waktu paro
Waktu pro adalah waktu yang dibutuhkan unsur radioaktif untuk mengalami peluruhan sampai menjadi 1/2 kali semula (masa atau aktivitas).
Rumus:
Description: http://nofrikakimiapasca.files.wordpress.com/2011/05/wp-21.jpg?w=242&h=54
Nt = massa setelah peluruhan
N0 = massa mula-mula
T = waktu peluruhan
t( 1)/2 = waktu paro
Contoh:
Suatu unsur radioaktif mempunyai waktu paro 4 jam. Jika semula tersimpan 16 gram unsur radioaktif, maka berapa massa zat yang tersisa setelah meluruh 1 hari ?
Jawab :
Description: http://nofrikakimiapasca.files.wordpress.com/2011/05/wp-3.jpg?w=520&h=337 

E.    Manfaat


E.1 Berdasarkan Sinar Radiasi α, β dan γ

Sinar alpha
-ditembakkan pada inti suatu atom untuk menghasilkan radioisotop (yang lebih sering digunakan untuk menembak adalah neutron)
Sinar beta
-menentukan letak kebocoran pipa saluran minyak / cairan atau gas yang tertimbun dalam tanah
-mengukur ketebalan kertas
-pancaran sinar beta Karbon C-14 dari fosil dapat digunakan untuk memperkirakan umur fosil.
Sinar gamma
- radiotherapy (membunuh sel kanker)/radiasi sinar gamma terkontrol
-sterilisasi alat-alat kedokteran
-sterilisasi pada makanan dan pengawetan makanan
-mengukur ketebalan baja
-mendeteksi datangnya pasokan minyak/cairan dari jauh yang disalurkan melalui pipa-pipa
-membuat varietas tanaman baru yang tahan penyakit
-dimanfaatkan pada pembuatan radiovaksin.
Pemanfaatan sinar α, β dan γ diantaranya berdasar atas daya tembus yang dimilikinya dimana daya tembus sinar gamma paling besar dibanding dua lainnya:
daya tembus α < β < γ

Jika dilihat dari daya ionisasinya, maka yang paling besar adalah sinar alpha:
Daya ionisasi α > β > γ



Lintasan sinar radioaktif dalam medan magnet
Description: http://fisikastudycenter.com/images/lintasan-sinar-radioaktif-1a.png
Lintasan sinar α, β γ saat melewati medan magnet
homogen arah tegak lurus masuk bidang baca.

Description: http://fisikastudycenter.com/images/lintasan-sinar-radioaktif-1b.png
Lintasan sinar α, β γ saat melewati medan magnet
homogen arah tegak lurus keluar bidang baca.

E.2 Manfaat Radioaktif (PERUNUT)

1.  Bidang Kedokteran
Penggunaan radioaktif untuk kesehatan sudah sangat banyak, dan sudah berapa juta orang di dunia yang terselamatkan karena pemanfaatan radioaktif ini. Sebagai contoh sinar X untuk penghancur tumor atau untuk foto tulang. Berdasarkan radiasinya:

1.1  Sterilisasi radiasi
Radiasi dalam dosis tertentu dapat mematikan mikroorganisme sehingga dapat digunakan untuk sterilisasi alat-alat kedokteran. Steritisasi dengan cara radiasi mempunyai beberapa keunggulan jika dibandingkan dengan sterilisasi konvensional (menggunakan bahan kimia), yaitu:
a)Sterilisasi radiasi lebihsempurna dalam mematikan mikroorganisme.
b)Sterilisasi radiasi tidak meninggalkan residu bahan kimia.
c)Karena dikemas dulu baru disetrilkan maka alat tersebut tidak mungkin tercemar bakteri lagi sampai kemasan terbuka. Berbeda dengan cara konvensional, yaitu disterilkan dulu baru dikemas, maka dalam proses pengemasan masih ada kemungkinan terkena bibit penyakit.

1.2  Terapi tumor atau kanker
Berbagai jenis tumor atau kanker dapat diterapi dengan radiasi. Sebenarnya, baik sel normal maupun sel kanker dapat dirusak oleh radiasi tetapi sel kanker atau tumor ternyata lebih sensitif (lebih mudah rusak). Oleh karena itu, sel kanker atau tumor dapat dimatikan dengan mengarahkan radiasi secara tepat pada sel-sel kanker tersebut.

1.3 Penentuan Kerapatan Tulang Dengan Bone Densitometer
Pengukuran kerapatan tulang dilakukan dengan cara menyinari tulang dengan radiasi gamma atau sinar-X. Berdasarkan banyaknya radiasi gamma atau sinar-X yang diserap oleh tulang yang diperiksa maka dapat ditentukan konsentrasi mineral kalsium dalam tulang. Perhitungan dilakukan oleh komputer yang dipasang pada alat bone densitometer tersebut. Teknik ini bermanfaat untuk membantu mendiagnosiskekeroposan tulang (osteoporosis) yang sering menyerang wanita pada usia menopause (matihaid).

1.4 Terapi Radiasi
Terapi radiasi dengan menggunakan sumber radiasi tertutup atau pesawat pembangkit radiasi telah lama dikenal untuk pengobatan penyakit kanker. Perkembangan teknik elektronika maju dan peralatan komputer canggih dalam dua dekade ini telah membawa perkembangan pesat dalam teknologi radioterapi. Dengan menggunakan pesawat pemercepat partikel generasi terakhir telah dimungkinkan untuk melakukan radioterapi kanker dengan sangat presisi dan tingkat keselamatan yang tinggi melalui kemampuannya yang sangat selektif untuk membatasi bentuk jaringan tumor yang akan dikenai radiasi, memformulasikan serta memberikan paparan radiasi dengan dosis yang tepat pada target. Dengan memanfaatkan teknologi 3D-CRT ini sejak tahun 1985 telah berkembang metoda pembedahan dengan menggunakan radiasi pengion sebagai pisau bedahnya (gamma knife). Dengan teknik ini kasus-kasus tumor ganas yang sulit dijangkau dengan pisau bedah konvensional menjadi dapat diatasi dengan baik oleh pisau gamma ini, bahkan tanpa perlu membuka kulit pasien dan yang terpenting tanpa merusak jaringan di luar target.

1.5 Teknik Pengaktivan Neutron
Teknik nuklir ini dapat digunakan untuk menentukan kandungan mineral tubuh terutama untuk unsur-unsur yang terdapat dalam tubuh dengan jumlah yang sangat kecil (Co, Cr, F, Fe, Mn, Se, Si, V, Zn dsb) sehingga sulit ditentukan dengan metoda konvensional. Kelebihan teknik ini terletak pada sifatnya yang tidak merusak dan kepekaannya sangat tinggi. Di sini contoh bahan biologik yang akan diperiksa ditembaki dengan neutron.
Penggunaan radioaktif dalam bidang kedokteran terutama untuk pendeteksian jenis kelainan di dalam tubuh dan untuk penyembuhan kanker yang sangat sukar dioperasi menggunakan metode lama. Prinsip radioaktif ini juga dimanfaatkan untuk pengetesan kualitas bahan di dalam suatu industri yang dapat dipergunakan dengan mudah dan dengan ketelitian yang tinggi. Radioisotop yang digunakan dalam bidang kedokteran dapat berupa sumber terbuka (unsealed source) dan sumber tertup (sealed source). Ketika radioisotop tersebut tidak dapat dipergunakan lagi, maka sumber radioaktif bekas tersebut sudah menjadi limbah radioaktif.
Dalam bidang kedokteran, radiografi digunakan untuk mengetahui bagian dalam dari organ tubuh seperti tulang, paru-paru dan jantung. Dalam radiografi dengan menggunakan film sinar-x, maka obyek yang diamati sering tertutup oleh jaringan struktur lainnya, sehingga didapatkan pola gambar bayangan yang didominasi oleh struktur jaringan yang tidak diinginkan. Hal ini akan membingungkan para dokter untuk mendiagnosa organ tubuh tersebut. Untuk mengatasi hal ini maka dikembangkan teknologi yang lebih canggih yaitu CT-Scanner.
Radioisotop Teknesium-99m (Tc-99m) merupakan radioisotop primadona yang mendekati ideal untuk mencari jejak di dalam tubuh. Hal ini dikarenakan radioisotop ini memiliki waktu paro yang pendek sekitar 6 jam sehingga intensitas radiasi yang dipancarkannya berkurang secara cepat setelah selesai digunakan. Radioisotop ini merupakan pemancar gamma murni dari jenis peluruhan electron capture dan tidak memancarkan radiasi partikel bermuatan sehingga dampak terhadap tubuh sangat kecil. Selain itu, radioisotop ini mudah diperoleh dalam bentuk carrier free (bebas pengemban) dari radioisotop molibdenum-99 (Mo-99) dan dapat membentuk ikatan dengan senyawa-senyawa organik. Radioisotop ini dimasukkan ke dalam tubuh setelah diikatkan dengan senyawa tertentu melalui reaksi penandaan (labelling).
Di dalam tubuh, radioisotop ini akan bergerak bersama-sama dengan senyawa yang ditumpanginya sesuai dengan dinamika senyawa tersebut di dalam tubuh. Dengan demikian, keberadaan dan distribusi senyawa tersebut di dalam tubuh yang mencerminkan beberapa fungsi organ dan metabolisme tubuh dapat dengan mudah diketahui dari hasil pencitraan. Pencitraan dapat dilakukan menggunakan kamera gamma. Radioisotop ini dapat pula digunakan untuk mencari jejak terjadinya infeksi bakteri, misalnya bakteri tuberkolose, di dalam tubuh dengan memanfaatkan terjadinya reaksi spesifik yang disebabkan oleh infeksi bakteri. Terjadinya reaksi spesifik tersebut dapat diketahui menggunakan senyawa tertentu, misalnya antibodi, yang bereaksi secara spesifik di tempat terjadinya infeksi. Beberapa saat yang lalu di Pusat Radioisotop dan Radiofarmaka (PRR) BATAN telah berhasil disintesa radiofarmaka bertanda teknesium-99m untuk mendeteksi infeksi di dalam tubuh. Produk hasil litbang ini saat ini sedang direncanakan memasuki tahap uji klinis.

Dalam bidang kesehatan radioisotop digunakan sebagai perunut (tracer) untuk mendeteksi kerusakan yang terjadi pada suatu organ tubuh. Selain itu radiasi dari radioisotop tertentu dapat digunakan untuk membunuh sel-sel kanker sehingga tidak perlu dilakukan pembedahan untuk mengangkat jaringan sel kanker tersebut. Berikut ini adalah contoh beberapa radioisotop yang dapat digunakan dalam bidang kesehatan (Sutresna, 2007).

Contoh radioisotop dalam bidang kedokteran :
       I-131 Terapi penyembuhan kanker Tiroid, mendeteksi kerusakan pada kelenjar gondok, hati dan otak
       Pu-238 energi listrik dari alat pacu jantung
       Tc-99 & Ti-201 Mendeteksi kerusakan jantung
       Na-24 Mendeteksi gangguan peredaran darah
       Xe-133 Mendeteksi Penyakit paru-paru
       P-32 digunakan untuk pengobatan penyakit polycythemia rubavera, yaitu pembentukkan sel darah merah yang berlebihan. Didalam penggunaannya P-32 disuntikkan ke dalam tubuh sehingga radiasinya yang memancarkan sinar beta dapat menghambat pembentukan sel darah merah pada sumsum tulang. Sedangkan, sinar gamma dapat digunakan untuk mensterilkan alat-alat kedokteran, sebelum dikemas dan ditutup rapat, misalnya pada proses sterilisasi alat suntik. Sebenarnya sebelum dikemas, alat suntik sudah disterilkan. Tetapi, pada proses pengemasan masih mungkin terjadi kontaminasi, sehingga setelah alat suntik tersebut dikemas dan ditutup rapat perlu dilakukan sterilisasi ulang dengan menggunakan sinar gamma.

2.      Bidang Hidrologi
       Mempelajari kecepatan aliran sungai.
       Menyelidiki kebocoran pipa air bawah tanah.
3.      Bidang Biologis
         Mempelajari kesetimbangan dinamis
         Mempelajari reaksi pengesteran.
         Mempelajari mekanisme reaksi fotosintesis.

4.     Bidang pertanian
      Pemberantasan hama dengan teknik jantan mandul, contoh : Hama kubis
      Pemuliaan tanaman/pembentukan bibit unggul, contoh : Padi
      Penyimpanan makanan sehingga tidak dapat bertunas, contoh : kentang dan bawang.

5.        Bidang Industri
      Pemeriksaan tanpa merusak, contoh : Memeriksa cacat pada logam
      Mengontrol ketebalan bahan, contoh : Kertas film, lempeng logam
      Pengawetan bahan, contoh : kayu, barang-barang seni
      Meningkatkan mutu tekstil, contoh : mengubah struktur serat tekstil
      Untuk mempelajari pengaruh oli dan aditif pada mesin selama mesin bekerja.







Manfaat Radioisotop
Berdasarkan Nama Unsur
No.
Nama Unsur
Manfaat / Kegunaan
1.
Iodium (I-131)
- mencari ketidaknormalan pada tiroid / kelenjar tiroid.
- di bidang hidrologi dapat digunakan untuk mengetahui kecepatan aliran sungai.
2
Iodium (I-123)
-disuntikkan pada pasien untuk mengetahui ada tidaknya gangguan ginjal.
3
Karbon (C-14)
-mencari ketidaknormalan yang berhubungan dengan diabetes dan anemia.
4
Kromium (Cr-51)
-keperluan scanning limpa.
5
Selenium (Se-75)
-keperluan scanning pankreas.
6
Teknetium (Tc-99)
-keperluan scanning tulang dan paru-paru
-scanning kerusakan jantung
-menyelidiki kebocoran saluran air bawah tanah.
7
Ti-201
-mendeteksi kerusakan jantung, digunakan bersama dengan Tc-99.
8
Galium (Ga-67)
- keperluan scanning getah bening.
9
Xe-133
-mendeteksi kesehatan paru-paru.
10
Fe-59
-mempelajari pembentukan sel darah merah.
11
Natrium (Na-24)
-untuk deteksi penyempitan pembuluh darah/trombosis
-mendeteksi kebocoran saluran air bawah tanah dan menyelidiki kecepatan aliran sungai
- di bidang kesehatan digunakan untuk mendeteksi gangguan peredaran darah.
12
Radioisotop Silikon
-perunut radioisotop pada proses pengerukan lumpur pelabuhan atau terowongan.
13
Fosfor (P-32)
-di bidang pertanian ddapat digunakan untuk memperkirakan jumlah pupuk yang diperlukan tanaman.
-di bidang kesehatan dapat digunakan mendeteksi penyakit mata, tumor dan hati.
14
Karbon (C-14)
-mengukur umur fosil hewan, tumbuhan dan manusia (dengan pengukuran pancaran sinar beta).
15
Uranium (U-238)
-menaksir umur batuan.
16
Uranium (U-235)
Reaksi berantai terkendali dalam PLTN.
17
Kobalt (Co-60)
-mengontrol pertumbuhan beberapa jenis kanker melalui sinar gamma yang dihasilkan.
18
Isotop 8O15
-menganalisis proses fotosintesis pada tanaman.
19
Isotop O-18
-di bidang kimia dapat digunakan sebagai atom tracer / perunut asal mula molekul air yang terbentuk.
20
K-40
K-40 digunakan bersama-sama dengan dan Ar-40 stabil untuk mengukur umur batuan, dengan membandingkan konsentrasi K-40 dan Ar-40 pada batuan.

 

 

 


F. Dampak Radioaktif

Akibat radiasi yang melebihi dosis yang diperkenankan dapat menimpa seluruh tubuh atau hanya lokal. Radiasi tinggi dalam waktu singkat dapat menimbulkan efek akut atau seketika sedangkan radiasi dalam dosis rendah dampaknya baru terlihat dalam jangka waktu yang lama atau menimbulkan efek yang tertunda. Radiasi zat radioaktif dapat memengaruhi kelenjarkelenjar kelamin, sehingga menyebabkan kemandulan. Berdasarkan dari segi cepat atau lambatnya penampakan efek biologis akibat radiasi radioaktif ini, efek radiasi dibagi menjadi seperti berikut.

1. Efek segera

Efek ini muncul kurang dari satu tahun sejak penyinaran. Gejala yang biasanya muncul adalah mual dan muntah muntah, rasa malas dan lelah serta terjadi perubahan jumlah butir darah.
2. Efek tertunda
Efek ini muncul setelah lebih dari satu tahun sejak penyinaran. Efek tertunda ini dapat juga diderita oleh turunan dari orang yang menerima penyinaran.
Efek serta Akibat yang ditimbulkan oleh radiasi zat radioaktif pada umat manusia seperti berikut di bawah ini :
1. Pusing-pusing
2. Nafsu makan berkurang atau hilang
3. Terjadi diare
4. Badan panas atau demam
5. Berat badan turun
6. Kanker darah atau leukimia
7. Meningkatnya denyut jantung atau nadi
8. Daya tahan tubuh berkurang sehingga mudah terserang penyakit akibat sel darah putih   yang jumlahnya berkurang
Pencemaran zat radioaktif, pencemaran zat radioaktif adalah suatu pencemaran lingkungan yang disebabkan oleh debu radioaktif akibat terjadinya ledakan reaktor-reaktor atom serta bom atom. Limbah radioaktif adalah zat radioaktif dan bahan serta peralatan yang telah terkena zat radioaktif atau menjadi radioaktif karena pengoperasian instalasi nuklir yang tidak dapat digunakan lagi.  yang paling berbahaya dari pencemaran radioaktif seperti nuklir adalah radiasi sinar alpha, beta dan gamma yang sangat membahayakan makhluk hidup di sekitarnya. Selain itu partikel-partikel neutron yang dihasilkan juga berbahaya.
Apabila ada makhluk hidup yang terkena radiasi atom nuklir yang berbahaya biasanya akan terjadi mutasi gen karena terjadi perubahan struktur zat serta pola reaksi kimia yang merusak sel-sel tubuh makhluk hidup baik tumbuh-tumbuhan maupun hewan atau binatang
Efek serta Akibat yang ditimbulkan oleh radiasi zat radioaktif pada umat manusia seperti berikut di bawah ini : Pusing-pusing, Nafsu makan berkurang atau hilang, Terjadi diare, Badan panas atau demam, Berat badan turun, Kanker darah atau leukimia, Meningkatnya denyut jantung atau nadi.

G.    Limbah Radioaktif

                         Ada beberapa pengertian limbah radioaktif :
1. Zat radioaktif yang sudah tidak dapat digunakan lagi, dan atau
2. Bahan serta peralatan yang terkena zat radioaktif atau menjadi radioaktif, dan sudah tidak dapat difungsikan. Bahan atau peralatan tersebut terkena atau menjadi radioaktif kemungkinan karena pengoperasian instalasi nuklir atau instalasi yang memanfaatkan radiasi pengion.
Jenis limbah radioaktif :                       
·         Dari segi besarnya aktivitas dibagi dalam limbah aktivitas tinggi, aktivitas sedang dan aktivitas rendah.
·         Dari umurnya di bagi menjadi limbah umur paruh panjang, dan limbah umur paruh pendek.
·         Dari bentuk fisiknya dibagi menjadi limbah padat, cair dan gas.
Limbah radioaktif berasal dari setiap pemanfaatan tenaga nuklir, baik pemanfaatan untuk pembangkitan daya listrik menggunakan reaktor nuklir, maupun pemanfaatan tenaga nuklir untuk keperluan industri dan rumah sakit.
Limbah radioaktif dikelola sedemikian rupa sehingga tidak membahayakan masyarakat, pekerja dan lingkungan, baik untuk generasi sekarang maupun generasi yang akan datang. Cara pengelolaannya dengan mengisolasi limbah tersebut dalam suatu wadah yang dirancang tahan lama yang ditempatkan dalam suatu gedung penyimpanan sementara sebelum ditetapkan suatu lokasi penyimpanan permanennya.
Apabila dimungkinkan pengurangan volume limbah maka dilakukan proses reduksi volume, misalnya menggunakan evaporator untuk limbah cair, pembakaran untuk limbah padat maupun cair yang dibakar, ataupun pemanfaatan untuk limbah padat yang bisa dimanfaatkan. Penyimpanan permanen dapat berupa tempat di bawah tanah dengan kedalaman beberapa ratus meter untuk limbah aktivitas tinggi dan waktu paruh panjang, atau dekat permukaan tanah dengan kedalaman hanya beberapa puluh meter untuk limbah aktivitas rendah-sedang.
Karena limbah memancarkan radiasi, maka apabila tidak diisolasi dari masyarakat dan lingkungan maka radiasi limbah tersebut dapat mengenai manusia dan lingkungan. Misalnya, limbah radioaktif yang tidak dikelola dengan baik meskipun telah disimpan secara permanen di dalam tanah, radionuklidanya dapat terlepas ke air tanah dan melalui jalur air tanah tersebut dapat sampai ke manusia.
Bahaya radiasi adalah, radiasi dapat melakukan ionisasi dan merusak sel organ tubuh manusia. Kerusakan sel tersebut mampu menyebabkan terganggunya fungsi organ tubuh. Disamping itu, sel-sel yang masih tetap hidup namun mengalami perubahan, dalam jangka panjang kemungkinan menginduksi adanya tumor atau kanker. Ada kemungkinan pula bahwa kerusakan sel akibat radiasi mengganggu fungsi genetika manusia, sehingga keturunannya mengalami cacat.
Limbah radioaktif sebagian dapat dibuang ke lingkungan apabila kandungannya (konsentrasi dan radioaktivitasnya) telah dibawah batas ambang yang ditetapkan oleh Pemerintah (Badan Pengawas Tenaga Nuklir, BAPETEN). Namun sebagian lagi karena aktivitasnya dan umurnya panjang maka harus disimpan dalam jangka yang sangat panjang.
Sebenarnya definisi, limbah radioaktif adalah bagian dari limbah bahan berbahaya dan beracun (B3), namun ada kalanya sebagian masyarakat membedakan kedua jenis limbah tersebut. Menurut pandangan terakhir ini, terdapat istilah ‘mixed waste’ (limbah campuran), yaitu limbah yang mengandung campuran unsur radioaktif sekaligus B3. Sebagai contoh, dalam proses pembuatan bahan bakar uranium, terdapat limbah yang mengandung asam (B3) dan radionuklida sekaligus. Sehingga dalam penanganannya, kedua sifat bahaya tersebut (B3 dan radioaktif) harus selalu dipertimbangkan.
Pengelolaan limbah radioaktif didefinisikan sebagai kegiatan pengumpulan, pengangkutan, pengolahan, penyimpanan sementara serta penyimpanan secara permanen. Apabila badan pengawas mengijinkan, maka kegiatan pengelolaan tersebut sebagian boleh dilaksanakan oleh pihak penghasil limbah radioaktif, yaitu dari pengumpulan sampai penyimpanan sementara. Namun penyimpanan permanen dilaksanakan oleh BATAN. Apabila penghasil limbah radioaktif tidak mampu melaksanakan kegiatan sebagian pengelolaan tersebut, maka pengelolaan limbah radioaktif sepenuhnya kewajiban BATAN.
Badan yang melakukan pengawasan adalah Badan Pengawas Tenaga Nuklir (BAPETEN) yang terpisah dari badan pelaksana (BATAN). Hal ini sesuai dengan amanat UU No. 10 tahun 1997 tentang Ketenaganukliran.
Dasar hukum yang mengatur limbah radioaktif adalah Undang-Undang No. 10 tahun 1997 tentang Ketenaganukliran, serta Peraturan pemerintah No. 27 tahun 2002 tentang Pengelolaan Limbah Radioaktif.
Biaya limbah tersebut sangat bergantung pada jenis limbahnya. Terdapat perbedaan biaya antara limbah radioaktif cair, padat terbakar, padat terkompaksi dan sebagainya.
Seluruh tarif tersebut telah ditetapkan dalam Peraturan pemerintah No. 16 tahun 2001. Sebagai contoh biaya pengolahan limbah radioaktif cair untuk aktivitas rendah dan sedang adalah Rp. 7300,- perliter, sedangkan limbah sumber bekas jarum Ra-226 dari rumah sakit sebesar Rp. 466.000,- perjarum. Tarif tersebut secara periodik ditinjau dan dimodifikasi sesuai dengan perkembangan teknologi serta perubahan ekonomi yang terjadi.
Berdasarkan penelitian yang telah dilakukan bahwa daerah disekitar limbah memilki jumlah cacahan permenit yang lebih besar dibandingkan daerah bunker ataupun daerah alam terbuka.ini menunjukan bahwa daerah disekitar limbah memiliki aktivitas radioaktif yang cukup besar, daerah disekitar bunker memiliki jumlah cacahan permenit yang sama dengan daerah alam terbuka. Pemantauan atau monitoring terhadap nanturally occuring radioactive materials atau sering disebut dengan NORM dapat dilakukan salah satunya dengan cara pengukuran konsentrasi partikulat radioaktif diudara. Partikulat radioaktif adalah partikel-partikel radioaktif yang ada di alam yang keberadaanya menyatu dengan udara, seperti debu radioaktif. Pengukuran konsentrasi partikulat radioaktif diudara dapat diketahui dengan jalan melakukan pencacahan terhadap suatu lokasi yang akan diukur konsentrasinya, pencacahan ini bertujuan untuk mengetahui cacahan awal, waktu paro dan jenis dari suatu radionuklida yang berada pada suatu sampel penelitian. Hasil penelitian dapat diperoleh kesimpulan yaitu Partikel Radioaktif alam yang ditemukan dikawasan BATAN Pasar jumat adalah Pb-214 dan Bi-214 yang merupakan deret Uranium yang mempunyai waktu paro berumur pendek, Konsentrasi Partikulat Radioaktif Pb-214 dan Bi-214 dilokasi limbah memiliki aktifitas yang tinggi dengan nilai KPR yang lebih besar dibandingkan nilai KPR dilokasi yang bunker dan alam terbuka, dan perubahan konsentrasi NORM dipengaruhi oleh aktifitas partikulat radioaktif alam yang diakibatkan oleh TENORM yaitu adanya sumber radioaktif. Tingkat radiasi untuk daerah limbah, bunker, dan alam terbuka tergolong rendah dengan demikian ketiga daerah tersebut dinyatakan aman dari radiasi. Berdasarkan hasil penelitian, maka penelitian perlu dilakukan dilokasi yang memiliki aktifitas yang radioaktifnya besar misalnya di industri kilang minyak, industri batu bara dan industri-industri lain yang menghasilkan limbah radioaktif, bagi masyarakat diharapkan untuk lebih mengetahui tingkat radiasi bagi kesehatan tubuh, dan bagi pemerintah hendaknya memberi peringatan untuk daerah yang memiliki tingkat energi radiasi yang tinggi.








BAB III

PENUTUP


A.    Kesimpulan

Penggunaan radioisotop sangat membantu manusia dalam berbagai bidang kehidupan seperti yang telah disebutkan dalam bab pembahasan, seperti dalam bidang kedokteran untuk mendeteksi kelainan-kelainan dalam jaringan tubuh, dalam hidrologi untuk menyelidiki kebocoran-kebocoran, atau dalam bidang pertanian untuk membentuk bibit unggul, dan dalam penyimpanan makanan pun radioisotop diperlukan. Serta dalam bidang kimia, sains, pengukuran usia bahan organik, serta dalam bidang industri.
Limbah radioaktif berasal dari setiap pemanfaatan tenaga nuklir, baik pemanfaatan untuk pembangkitan daya listrik menggunakan reaktor nuklir, maupun pemanfaatan tenaga nuklir untuk keperluan industri dan rumah sakit.
Limbah radioaktif dikelola sedemikian rupa sehingga tidak membahayakan masyarakat, pekerja dan lingkungan, baik untuk generasi sekarang maupun generasi yang akan datang. Cara pengelolaannya dengan mengisolasi limbah tersebut dalam suatu wadah yang dirancang tahan lama yang ditempatkan dalam suatu gedung penyimpanan sementara sebelum ditetapkan suatu lokasi penyimpanan permanennya.

B.     Saran

Berdasarkan apa yang telah saya jelaskan dalam makalah mengenai Radioaktif ini pasti ada kekurangan maupun kelebihannya. Adapun kritik maupun saran dapat disampaikan ke penulis agar dapat memperbaiki makalah ini baik dari segi penulisan, materi, maupun tata bahasa yang disampaikan. Penulis mengharapkan pembaca dapat mengambil manfaat dari makalah yang telah dibuat.




DAFTAR PUSTAKA


http://admin.blogspot.com/2009/01/pengelolaanradioaktif